A novel methodology for speeding up IC performance in 32nm FinFET

نویسندگان

  • Hung Viet Nguyen
  • Myunghwan Ryu
  • Youngmin Kim
چکیده

This paper presents a novel methodology for IC speed-up in 32 nm FinFET. By taking advantage of independently controlling two gates of IG-FinFET, we develop the boosting structures that can improve the signal propagation on interconnect significantly. Furthermore, the circuit area and power dissipation issues are also taken into account. With the addition of boosting path, the full booster can reduce the delay of interconnect as much as 50% while consuming merely more than 18% of power. In the high-speed and low-power IC designs, the proposed boosting structure gives circuit designers several options in the trade-off between the power consumption and high performance which play an important role in application-specific integration circuits in the 22 nm node and beyond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an Adiabatic FinFET Circuit Operating In Medium Strong Inversion Region

Scaling of device technology, the leakage power has become the main part of power consumption, which seriously reduces the energy recovery efficiency of adiabatic logic.CMOS devices are shrinking to nanometer regime, increasing the consequences in short channel effects and variations in the process parameters which lead to cause the reliability of the circu it as well as performance. To solve t...

متن کامل

Super-Threshold Adiabatic FinFET Circuits Based on PAL-2N Operating in Medium Strong Inversion Regions

Lowering supply voltage of FinFET circuits is an effective way to achieve low power dissipations. In this paper, the super-threshold adiabatic FinFET circuits based on PAL-2N operating on medium strong inversion regions are addressed in terms of energy consumption and operating frequency. The supply voltage of the super-threshold circuits is much larger than the threshold voltage of the transis...

متن کامل

Comparative Study of 8T SRAM Cell using CMOS, FinFET and CNTFET in Nanoscale Technologies

In the world of Integrated Circuits, Complementary Metal–Oxide– Semiconductor (CMOS) has lost its credentiality during scaling beyond 32nm. Scaling causes severe Short Channel Effects (SCE) which are difficult to suppress. As a result of such SCE many alternate devices have been studied. Some of the major contestants include Multi Gate Field Effect Transistor (MuGFET) like FinFET and Carbon Nan...

متن کامل

An Investigation of Super-Threshold FinFET Logic Circuits Operating on Medium Strong Inversion Regions

Abstract: Scaling supply voltage of FinFET circuits is an efficient method to achieve low power dissipation. Superthreshold FinFET logic circuits can attain low power consumption with favorable performance, because FinFET devices operating on medium strong inversion regions can provide better drive strength than conventional CMOS transistors. The supply voltage of the super-threshold circuit is...

متن کامل

ISSCC 2009 / SESSION 19 / ANALOG TECHNIQUES / 19 . 6 19 . 6 A sub - 1 V Bandgap Voltage Reference in 32 nm FinFET Technology

The bulk CMOS technology is expected to scale down to about 32nm node and likely the successor would be the FinFET. The FinFET is an ultra-thin body multi-gate MOS transistor with among other characteristics a much higher voltage gain compared to a conventional bulk MOS transistor [1]. Bandgap reference circuits cannot be directly ported from bulk CMOS technologies to SOI FinFET technologies, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Electronic Express

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012